Selective Hydrogenation of Carbon Monoxide to Oxygenates by Use of a Novel Iron Catalyst

Mark van der Riet, Richard G. Copperthwaite, Sandrine F. Demarger, and Graham J. Hutchings*t

Catalysis Research Programme, Department of Chemistry, University of the Witwatersrand, P 0 Wits, Johannesburg 2050, South Africa

We report a novel high-selectivity Fe/Cr₂O₃ catalyst for the title reaction which when unpromoted gives high selectivities for methanol production, and on addition of K+ as promoter gives combined selectivities for ethanol and ethanal of *ca.* **70%.**

Hydrogenation of carbon monoxide to produce ethanol, ethanal, and other oxygen-containing molecules (oxygenates) is a commercially attractive reaction¹ that continues to receive attention.2-4 **A** number of catalysts have been studied; in particular, considerable interest has been shown in alkalipromoted Rh catalysts, but with these catalysts significant selectivity for hydrocarbon production is invariably observed.⁵ Other workers have shown that supported Pd,⁶ Re,⁷ $Ru,$ ⁸ and Ir⁹ catalysts can also give high selectivities for oxygenate production. It has been noted⁴ that higher oxygenate synthesis is normally catalysed by alkali-promoted methanol synthesis catalysts; this approach has recently been exemplified with a potassium-promoted cobalt/copper/ chromium oxide catalyst¹⁰ which gives very high yields of C_2-C_4 linear alcohols with no hydrocarbon by-product formation. Alkali-promoted iron catalysts have been known for some time to produce oxygenated products but as yet this

reaction has not been studied in detail. We now report a novel, stable, high-selectivity $Fe/Cr₂O₃$ catalyst that exhibits high selectivity for methanol or ethanol and ethanal production under appropriate conditions.

K/Fe/Cr and Fe/Cr catalysts were prepared by an incipient wetness technique. Cr_2O_3 (B.D.H.; 99.5%) was impregnated with aqueous iron(III) nitrate (Reidel De Hain AG; reagent grade) and potassium carbonate, and the resulting slurry was dried at 100°C *in vacuo* and calcined (500°C; **24** h). In a typical experiment the catalyst $(2 g)$ was reduced with H_2 at 400°C for 16 h *in situ* in a fixed-bed stainless steel reactor of internal diameter 14 mm. Carbon monoxide and hydrogen $(1:1 \text{ v/v})$ were introduced over the reduced catalyst at 585 kPa and at a gas hourly space velocity [g.h.s.v.; volumetric gas flow rate (at s.t.p.) per unit volume of catalyst] of 260 h⁻¹. Products were analysed by on-line gas chromatography; satisfactory mass balances were obtained for all data quoted.

The results of reactions over a 5% Fe/Cr₂O₃ catalyst at a range of temperatures are shown in Table 1. At low reaction temperatures this catalyst can give high selectivities for methanol production of *ca*. 60 mass % at the low reaction pressures utilised. At higher reaction temperatures the

i. *Present address:* The Leverhulme Centre for Innovative Catalysis, Department of IPI Chemistry, University of Liverpool, PO **Box 147,** Liverpool L69 3BX, U.K.

Table 1. Experimental results.a

products comprise mainly hydrocarbons, and the high oxygenate selectivity is decreased. However, addition of 0.1% K⁺ to this catalyst dramatically changes the product distributions under comparable reaction conditions: the major products are then ethanol and ethanal *(ca.* 70 mass %) at low temperatures (220 °C). Significantly, no methanol or other C_1 oxygenates were observed as products under any conditions tested with the K+-promoted catalyst. An increase in reaction temperature again results in loss of selectivity for oxygenate production, with CH₄ becoming the dominant product at 350° C. The high selectivity for methanol production with the unpromoted catalyst and the high selectivity for C_2 oxygenates with the promoted catalyst were stable for reaction periods in excess of 680 h. Additionally, the start-up temperature at which the reduced catalysts are stabilised in the $CO/H₂$ reactant was found to be important for the promoted catalyst, and use of lower initial temperatures produced catalysts with improved selectivity for C_2 oxygenate production.

Detailed studies of catalyst optimisation and the mechanistic role of the alkali promoter are continuing in our laboratories. However, the dramatic change from C_1 oxygenates to *C2* oxygenates observed with alkali-promoted catalysts may be indicative that the C_2 oxygenates are formed via a CO insertion pathway; hence these results support the recent observation of Ponec *et al.3*

We thank the Foundation for Research Development, CSIR (Pretoria), the University of the Witwatersrand, and Sasol Technology for financial support.

Received, 6th January 1988; Corn. 810001 9K

References

- 1 A. Aquilo, J. **S.** Alder, D. N. Freeman, and R. J. H. Voorhoeve, *Hydrocarbon Process.,* 1983, **62,** 57.
- 2 T. Fukushima, H. Arakawa, and M. Ichikawa, J. *Chem. SOC., Chem. Commun.,* 1985,729.
- 3 T. L. F. Favre, G. van der Lee, and V. Ponec, *J. Chem. SOC., Chem. Commun.,* 1985, 230.
- 4 E. K. Poels and V. Ponec, in 'Catalysis,' Specialist Periodical Report, Royal Society of Chemistry, 1983, vol. 6, p. 196.
- *5* R. Breault, **S.** P. Hindermann, A. Kiennemann, and M. Larvin, in 'Catalysis on the Energy Scene,' eds. **S.** Kalaguine and A. Mahay, Elsevier, Amsterdam, 1984, p. 489.
- 6 M. L. Poutsma, L. F. Elek, R. A. Ibarbia, A. P. Risch, and J. **A.** Rabo, J. *Cutul.,* 1978, **52,** 157.
- 7 K. Takenchi, M. Matsuzaki, H. Arakawa, and *Y.* Sugi, *Appl. Cutul.,* 1985, 18, 325.
- 8 C. **S.** Kellner and A. T. Bell, J. *Cutul.,* 1981, 71, 288.
- 9 P. Villeger, C. Leclercq, and R. Maurel, *Bull. SOC. Chim. Fr.,* 1979, **406.**
- 10 Ph. Courty, D. Durand, E. Freund, and A. Sugier, J. *Mol. Catal.,* 1982, 17,241; A. Sugier and E. Freund, **U.S.** Pat. 4 122 110/1978.