Selective Hydrogenation of Carbon Monoxide to Oxygenates by Use of a Novel Iron Catalyst

Mark van der Riet, Richard G. Copperthwaite, Sandrine F. Demarger, and Graham J. Hutchings*†

Catalysis Research Programme, Department of Chemistry, University of the Witwatersrand, P O Wits, Johannesburg 2050, South Africa

We report a novel high-selectivity Fe/Cr_2O_3 catalyst for the title reaction which when unpromoted gives high selectivities for methanol production, and on addition of K⁺ as promoter gives combined selectivities for ethanol and ethanal of *ca.* 70%.

Hydrogenation of carbon monoxide to produce ethanol, ethanal, and other oxygen-containing molecules (oxygenates) is a commercially attractive reaction¹ that continues to receive attention.²⁻⁴ A number of catalysts have been studied; in particular, considerable interest has been shown in alkalipromoted Rh catalysts, but with these catalysts significant selectivity for hydrocarbon production is invariably observed.⁵ Other workers have shown that supported Pd,⁶ Re,⁷ Ru,⁸ and Ir⁹ catalysts can also give high selectivities for oxygenate production. It has been noted⁴ that higher oxygenate synthesis is normally catalysed by alkali-promoted methanol synthesis catalysts; this approach has recently been exemplified with a potassium-promoted cobalt/copper/ chromium oxide catalyst¹⁰ which gives very high yields of C_2 - C_4 linear alcohols with no hydrocarbon by-product formation. Alkali-promoted iron catalysts have been known for some time to produce oxygenated products but as yet this

reaction has not been studied in detail. We now report a novel, stable, high-selectivity Fe/Cr_2O_3 catalyst that exhibits high selectivity for methanol or ethanol and ethanal production under appropriate conditions.

K/Fe/Cr and Fe/Cr catalysts were prepared by an incipient wetness technique. Cr_2O_3 (B.D.H.; 99.5%) was impregnated with aqueous iron(III) nitrate (Reidel De Hain AG; reagent grade) and potassium carbonate, and the resulting slurry was dried at 100 °C *in vacuo* and calcined (500 °C; 24 h). In a typical experiment the catalyst (2 g) was reduced with H₂ at 400 °C for 16 h *in situ* in a fixed-bed stainless steel reactor of internal diameter 14 mm. Carbon monoxide and hydrogen (1:1 v/v) were introduced over the reduced catalyst at 585 kPa and at a gas hourly space velocity [g.h.s.v.; volumetric gas flow rate (at s.t.p.) per unit volume of catalyst] of 260 h⁻¹. Products were analysed by on-line gas chromatography; satisfactory mass balances were obtained for all data quoted.

The results of reactions over a 5% Fe/Cr₂O₃ catalyst at a range of temperatures are shown in Table 1. At low reaction temperatures this catalyst can give high selectivities for methanol production of *ca*. 60 mass % at the low reaction pressures utilised. At higher reaction temperatures the

⁺ Present address: The Leverhulme Centre for Innovative Catalysis, Department of IPI Chemistry, University of Liverpool, PO Box 147, Liverpool L69 3BX, U.K.

	Temp.	CO	Product selectivity (% by mass)												Total	Total hydro- carbons
Catalyst	(°C)		Сн₃Он	C ₂ H ₅ OH	C ₃ H ₇ OH	C₄H ₉ OH	C ₅ H ₁₁ OH	CH₃CHO	CH_4	C_2	C3	C4	C ₅	C ₆₊	ates (%)	(%)
	ſ 220	5	0	21.4	9.6	3.6	0	48.7	3.3	1.0	0.2	7.0	2.0	3.2	83.4	16.6
$K: Fe: Cr_2O_3, 0.1:5:100$	250	5.5	0	20.6	10.6	7.6	0.5	35.2	2.0	1.4	1.4	6.5	3.5	10.7	74.5	25.5
	l 300	15	0	8.8	5.4	5.3	6.1	5.8	6.7	9.2	10.9	7.4	7.4	27.0	31.4	68.5
	350	20	0	4.9	3.3	2.2	0.1	4.2	22.8	18.1	14.5	8.0	6.4	15.5	14.8	85.2
	[250	5	59.6	15.9	8.0	0	0	0	2.5	2.9	2.6	4.6	1.2	2.7	83.8	16.2
$Fe: Cr_2O_3, 5: 100$	300	32	7.2	10.7	7.9	0	0	0.8	15.0	17.3	16.6	7.8	5.9	10.8	26.7	73.3
	350	56	0.1	12.9	5.3	0	tr	tr	32.5	22.0	18.5	1.9	1.0	5.8	18.3	81.6
^a CO/H ₂ reaction at 58	^a CO/H ₂ reaction at 585 kPa; g.h.s.v. 260 h ⁻¹ .															

Table 1. Experimental results.^a

products comprise mainly hydrocarbons, and the high oxygenate selectivity is decreased. However, addition of 0.1% K⁺ to this catalyst dramatically changes the product distributions under comparable reaction conditions: the major products are then ethanol and ethanal (ca. 70 mass %) at low temperatures (220 °C). Significantly, no methanol or other C_1 oxygenates were observed as products under any conditions tested with the K+-promoted catalyst. An increase in reaction temperature again results in loss of selectivity for oxygenate production, with CH₄ becoming the dominant product at 350 °C. The high selectivity for methanol production with the unpromoted catalyst and the high selectivity for C₂ oxygenates with the promoted catalyst were stable for reaction periods in excess of 680 h. Additionally, the start-up temperature at which the reduced catalysts are stabilised in the CO/H₂ reactant was found to be important for the promoted catalyst, and use of lower initial temperatures produced catalysts with improved selectivity for C_2 oxygenate production.

Detailed studies of catalyst optimisation and the mechanistic role of the alkali promoter are continuing in our laboratories. However, the dramatic change from C_1 oxygenates to C_2 oxygenates observed with alkali-promoted catalysts may be indicative that the C_2 oxygenates are formed *via* a CO insertion pathway; hence these results support the recent observation of Ponec *et al.*³ We thank the Foundation for Research Development, CSIR (Pretoria), the University of the Witwatersrand, and Sasol Technology for financial support.

Received, 6th January 1988; Com. 8/00019K

References

- 1 A. Aquilo, J. S. Alder, D. N. Freeman, and R. J. H. Voorhoeve, Hydrocarbon Process., 1983, 62, 57.
- 2 T. Fukushima, H. Arakawa, and M. Ichikawa, J. Chem. Soc., Chem. Commun., 1985, 729.
- 3 T. L. F. Favre, G. van der Lee, and V. Ponec, J. Chem. Soc., Chem. Commun., 1985, 230.
- 4 E. K. Poels and V. Ponec, in 'Catalysis,' Specialist Periodical Report, Royal Society of Chemistry, 1983, vol. 6, p. 196.
- 5 R. Breault, S. P. Hindermann, A. Kiennemann, and M. Larvin, in 'Catalysis on the Energy Scene,' eds. S. Kalaguine and A. Mahay, Elsevier, Amsterdam, 1984, p. 489.
- 6 M. L. Poutsma, L. F. Elek, R. A. Ibarbia, A. P. Risch, and J. A. Rabo, J. Catal., 1978, 52, 157.
- 7 K. Takenchi, M. Matsuzaki, H. Arakawa, and Y. Sugi, *Appl. Catal.*, 1985, **18**, 325.
- 8 C. S. Kellner and A. T. Bell, J. Catal., 1981, 71, 288.
- 9 P. Villeger, C. Leclercq, and R. Maurel, Bull. Soc. Chim. Fr., 1979, 406.
- 10 Ph. Courty, D. Durand, E. Freund, and A. Sugier, J. Mol. Catal., 1982, 17, 241; A. Sugier and E. Freund, U.S. Pat. 4 122 110/1978.